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Various types of moments of velocity and scalar fluctuations of the first to the fourth 
order have been measured and analysed. First, an orthogonal series expansion for the 
three-dimensional joint probability density function (p.d.f.) is developed using the 
cumulants and Hermite polynomials. This p.d.f. is found to provide satisfactory 
predictions for the statistical characteristics, including triple products, of turbulent 
momentum and scalar transfer. Next, the conditional sampling and averaging 
technique is employed to investigate the statistical characteristics of coherent 
turbulent transfer processes of momentum and scalar. Conditional p.d.f.s are 
developed for various moments of velocity and scalar up to the third order. It is 
shown that the present p.d.f.s can predict the detailed role of coherent motions in the 
dynamics of wall turbulent shear flows and in the relevant process of scalar transport 
by turbulence. In  particular, the importance of coherent motions in the turbulent 
diffusion process of Reynolds-stress components and scalar fluxes is demonstrated 
for the first time by the present theory. 

1. Introduction 
Transfer problems of momentum and scalar have begun to be analysed using 

recent advanced turbulence models such as those based on Reynolds-stress and 
scalar-flux closures (Elghobashi & Launder 1981). Results, however, are not as 
satisfactory as initially expected, mainly owing to a few unreasonable hypotheses in 
the models (Lumley 1978). In  order to resolve pertinent problems adequately, we 
need correct knowledge of the statistical characteristics of the first- and second-order 
moments of velocity and scalar fluctuations, and the relevant processes of turbulent 
diffusion (i.e. third-order moments), all of which are basic parameters in the stress 
and scalar flux equation models. 

Antonia & Atkinson (1973) first investigated statistical characteristics of Reynolds 
shear stress without the aid of the assumption of Gaussian behaviour. Their 
approaches, however, cannot be applied to the analysis of turbulent scalar transfer 
and third-order moments of velocity and scalar, since the derived probability density 
function (p.d.f.) is only valid for second-order moments in a velocity field without 
passive contaminants. Furthermore, in the analysis of third-order moments, we 
cannot generally use the conventional assumption of Gaussian behaviour because of 
the essential unreality according to which a mean value is consistently zero. 

On the other hand, it is now widely known that the coherent structures exist 
spatially and temporally in the near-wall region, and dominate the fluid-dynamical 
characteristics of wall turbulence. Various features of the coherent structures have 
been investigated in detail, particularly since the discovery of the prominent role of 
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coherent motions in the generation mechanism of turbulence kinetic energy. For 
example, Lu & Willmarth (1973) and Hishida & Nagano (1981), using a uw-quadrant 
analysis, have revealed that most of the Reynolds shear stress uv is produced by 
ejection- and sweep-type motions (essential elements of coherent structures). 

During the past decade, we have investigated the mechanism of transport 
phenomena in turbulence from various viewpoints to correlate the transfer processes 
of momentum and scalar with these coherent fluid motions (Hishida & Nagano 1979 ; 
Nagano & Hishida 1985; Hishida, Nagano & Tagawa 1986; Nagano & Tagawa 1988). 
However, there is not yet a full explanation of the problems of how or how strongly 
these organized fluid motions dominate the statistical characteristics of scalar 
turbulence, e.g. scalar-fluctuation variance, turbulent scalar fluxes and triple 
correlations between velocity and scalar. 

Perry & Hoffmann (1976) examined the similarity between the Reynolds shear 
stress uw and turbulent scalar flux v0 from the results of a conditional analysis for a 
heated flat-plate boundary-layer flow. I n  their experimental study using quadrant 
analysis, however, the Reynolds shear stress uw was analysed in the (u, w)-plane and 
the turbulent scalar flux w e  in the (w, @-plane. Hence, the correspondence between 
scalar transport and fluid motions was not strictly specified. 

The present study has three objectives: (i) to obtain experimental evidence of 
high-order moments related to turbulent momentum and scalar transfer in a wall 
turbulent shear flow; (ii) to develop a theory by which the principal statistical 
aspects of these moments can be predicted ; and (iii) to identify the role of coherent 
structures in transport phenomena from a statistical viewpoint. The structural 
knowledge of turbulent momentum and scalar transfer obtained previously is 
reflected in the present statistical investigation. I n  the theory, we have used the 
cumulant-discard method (Monin & Yaglom 1971) to take into account a departure 
from Gaussian behaviour (Kampe' de FBriet 1966; Frenkiel & Klebanoff 1967; 
Sullivan & Yip 1985). Then we have developed multidimensional joint p.d.f.s for 
quantities controlling transport phenomena. The present theory covers completely 
the reported two-dimensional probability theory (Antonia & Atkinson 1973 ; 
Nakagawa & Nezu 1977). The validity of the theory has been verified by application 
to the prediction of experimental results of p.d.f. distributions of higher-order 
moments. Particular attention is directed to the study of statistical characteristics 
of third-order moments, because measurements of their p.d.f. distributions are few 
and current modelling is quite ad hoc. I n  the latter half of this paper, we have 
expanded the theoretical treatment for the three-dimensional joint p.d.f. by 
combining i t  with a conditional-sampling technique, and investigated the internal 
structures of velocity and scalar fluctuations, Reynolds shear stress, turbulent scalar 
fluxes, and turbulent diffusion, i.e. the triple products of velocity and scalar. The 
organized motions and their contributions to  transport process in wall turbulence are 
discussed in concrete terms. 

2. Experimental facility and data acquisition 
The experimental apparatus used for the present study is the same as that described 

by Hishida & Nagano (1979). The experiment was performed in an air flow in a 
45.68 mm ID reamed brass tube heated to a uniform wall temperature of 100 "C a t  
a Reynolds number (based on bulk velocity and pipe diameter) of 40000. Both 
velocity and thermal fields were fully developed at the measurement locations. The 
centreline velocity Oc and temperature 0, were 17.2 m/s and 41.2 "C, respectively. 
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Fluctuations of velocity components, u (axial) and v (normal), and scalar 
(temperature), 0, were simultaneously measured with a specially devised three-wire 
probe. The probe consisted of two hot wires, one a symmetrically bent V-shaped wire 
(Nagano & Hishida 1985; Hishida et at. 1986) and the other a single straight one, 
together with a cold wire (Hishida & Nagano 1978). It should be noted that the probe 
was constructed as small as practicable in order to assure spatial resolution without 
causing any thermal and aerodynamic interference between each wire, i.e. the 
sensing part was kept smaller than 22 viscous units or 67 (where 7 is the Kolmogorov 
microscale). All data were recorded in analog form with an F M  data recorder 
(TEAC R-210B) and then reproduced for conversion to digital form. The digitized 
data were stored on magnetic tape with a 12 bit analog-to-digital converter 
(TEAC DR-2000). For each set of u-, v- and @fluctuations, the real-time sampling 
frequency was 32 kHz, and the number of data points per measurement was 65536. 
The statistical analysis of the data was performed on a FACOM M-382 computer 
system. 

3. Basic theory 
To analyse generally the statistics of momentum and scalar transfer, we should 

introduce the four-dimensional joint p.d.f. with three components of a velocity 
vector V(u, v, w) and a fluctuating scalar 0 as random variables. In  two-dimensional 
turbulent flows, however, the random properties pertaining to transport processes 
can be sufficiently specified by the three-dimensional joint p.d.f. P(u, v, 0). When a 
Gaussian distribution is supposed to be P(u, v ,  O), mean values of any third-order 
moments are consistently zero, which is usually not the case in an actual phenomenoq. 
Thus, as given below, we have developed a more general representation for P(Z;, 6 , O )  
using the characteristic function $, which is the Fourier transform of the p.d.f. In 
what follows, a circumflex denotes the normalization by the respective r.m.s. value, 
and an overbar represents an expected value or time average. 

$(.&v,[) = [Jr P(Z;,6,6) exp{i(Z;cf6y+6[)}ddd6d6. ( 1 )  
-m 

If a p9rticular form is given to the characteristic function $ defined by ( l ) ,  
P(&,6,6) can be obtained by executing the inverse Fourier transform of $. Two 
expressions for $ are conceivable. 

( A )  Description of $ in terms of a moment mpqr. The following relation holds 

where K = p + q + r  and 

Thus, we obtain the following expression for $: 

m 
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( B )  Description of $ in terms of a cumulant ItDu, .  The definition of the cumulant 

Thus, 

Similarly, the relations for K > 5 can be deduced, but the calculations become 
increasingly cumbersome. 

Now, the Gaussian joint p.d.f. can be written as 

with f l  = 4, i2 = v" and i3 = 8, where 

R =  R,, Ri2 !:); Aij is the cofactor of the matrix R ;  ( R13 R23 
~ 

and Rij denotes the correlation coeEcient between xi and xi ( = 
field given by (8), moments and cumulants preserve the following characteristics : 

R). I n  a Gaussian 

( a )  odd-order moments (i.e. K is odd) are all zero; 
( b )  even-order moments (i.e. K is even) can be represented by zero- and second- 

( c )  for K 2 3, all cumulants are zero. 
order moments ; 

In  a statistical analysis of a field close to Gaussian, ( c )  is quite useful. It is generally 
recognized that probability distributions of turbulent phenomena do not deviate 
largely from a Gaussian distribution. Hence, adopting (B)  for describipg @ and using 
the characteristic ( c ) ,  we can accurately represent the p.d.f. P(&, S ,8 )  with a small 
number of series-expansion terms. From (6) and (7), we obtain 

- 
1 "  where k,, ,  = ml10 = uu = R,,, klol = R,, and k,,, = Rvo. Equation (9) can be 

rewritten in either of two ways: 
m 
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$($> r,!3 = exp - $(12 + r2 + P + 2Ru, $7 + 2Ru, $C+ 2R,, 75)) 
00 

x C Dpq,iKSpqqC;r, ( 1 1 )  
P, g ,  r=o 

where Cpqr and D,,, are the coefficients in the power-series expansion of (9). If we use 
( lo) ,  the final form for P(d,6,8)  is expressed by the pro+ucts of one-dimensional 
Hermite polynomials. On the other hand, with (1 l ) ,  P(d,  6 ,8)  is represented by three- 
dimensional conjugate Hermite polynomials. The study by Antonia & Atkinson 
(1973) on a two-dimensional p.d.f. with two random variables showed that an 
expression with conjugate Hermite polynomials predicted the experimental results a 
little better than one with one-dimensional Hermite polynomials. However, even in 
their two-dimensional analysis, numerous series-expansion terms were needed for the 
p.d.f. and the expression was complex. Since, in the present study, we analyse the 
third-order moments in a three-dimensional field, the use of (11) will obviously make 
mathematical treatment extremely difficult. I n  addition, to apply a p.d.f. to 
multisided analyses of transport processes of momentum and scalar and to modelling 
third-order moments, it  is desirable to keep the number of parameters as few as 
possible. Hence, we adopt expression (10). 

Substituting the characteristic function (10) into (1)  and performing the inAverse 
Fourier transform, we obtain the following general representation for P(d,  6, 0) : 

where 

The coeficients listed above are determined from the measured correlations up to the 
fourth order (see (7)).  

4. High-order moments and probability distributions of velocity and scalar 
4.1. Probability density distributions of velocity and scalar Jluctuations 

The p.d.f. distributions P(6) and P ( i )  at  various locations, from within the sublayer 
out to the pipe centreline (y' = 863.0, yf being dimensionless distance from the 
wall = u , y / v ) ,  are shown in figure 1.  The solid lines indicate the theoretical values 
derived from (12), and the broken lines represent the Gaussian distributions. Thus, 
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FIGURE 1 .  Probability density distributions of velocity and scalar fluctuations. (a )  P (6 ) :  0, 
experiment ; -, equation 15(a) ; ---, Gaussian. (b )  P(0)  : 0, experiment ; -, equation 15(b)  ; 
- -_  , Gaussian. 

the theoretical values of P(v^),P(d) and the first-order Gaussian p.d.f. P&) are 
given by 

P(6)  = P ( d ,  6,6)  dCdi 

= &(i) { 1 + CO3,(G3 - 36) +C040(64 - 66' + 3)}, 

P ( 6 )  = PG(i )  { 1 + Coo,(@ - 36) + COo4(i4 - 6& + 3)}, 

pG(x) = exp ( - + x z ) / ( ~ n ) t ,  x = 6 or 6. (16) 

(15a)  

(15b)  

The P(G)-curve is very close to Gaussian near the wall. A departure from the Gaussian 
distribytion, however, occurs in the log-law region and in the core region of the flow. 
The P(0)-curve, on the other hand, is strongly skewed to the negative side of 0 very 
near the wall, although it may be approximated with a Gaussian distribution in the 
log-law region. Inversely, P(C) is skewed positively in the near-wall region (not 
shown). The measurement of a joint p.d.f. P(G, v^) shown in figure 2 (a )  indicates that 
the sweep-type motions, rushing into the near-wall region from regions away from 
the wall, predominate in the near-wall structure, i.e. the large-amplitude motions 
with u positive and v negative occur most frequently near the wall. The negatively 
skewed P(0)-  and positively skewed P(4)-distributions are the consequence of these 
inrushes of low-enthalpy and high-momentum fluid. Totally opposite trends are 
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FIGURE 2. Joint probability density of 6. and 4 (y' = 7.6). Lines are isocontours with an equal 
increment of 0.02. (a)  Experiment; (b )  prediction. 

observed in the core region, reflecting the dominant influence of high-enthalpy and 
low-momentum fluid ejections from the wall region (Nagano & Tagawa 1988). These 
unique features, as seen from figure 1, are almost perfectly predicted by (15). 

The theoretical value of P(&, 4) derived from (12) becomes 
m 

P(&, 6) = P(&, 6 , 6 )  d6 L 
1 K G 4  

(17) 

Comparison of predictions (figure 2 b )  with measurements (figure 2a) proves that 
(17) represents accurately a highly anisotropic velocity field near the wall. Equation 
(17) is also identical to the theoretical formula developed by Antonia & Atkinson 
(1973). 

and the 
flatness factor F ( x )  = p. The former is particularly indicative of the probabilistic 
asymmetry of x and the latter is a measure of symmetrical peakedness of the 
probability. A random variable with a Gaussian p.d.f. has values of S ( x )  = 0 and 
F ( x )  = 3. The skewness and flatness factors of u-, v- and 0-fluctuations are shown in 
figures 3 and 4, respectively. The skewness factor S(u)  becomes negative in the outer 
region and positive in the near-wall region, while it is approximately zero over the 
fully turbulent log region. It is conceivable that a marked change in S(u) for 
y+ < 20 is a reflection of the existence of coherent motions near the wall. 
Measurements of X(u) and S(0) indicate that u- and 0-fluctuations are skewed in the 
opposite direction. In contrast, S(v )  is essentially positive over most of the pipe 
section, 

Next, we show that the skewness factor is related closely to the fraction of time 
during which a random variable x is positive (y+)  or negative (y-).  With (15), the time 
fraction y+  - is expressed as 

_ -  - Z C,,,H,(&)H,(4) exp{-a(zi2+62)). 
2n P,,==O 

The shapes of p.d.f.s P(x )  are well marked by the skewness S ( x )  = 

Y + ( X )  = JOm P ( + i ) d i  

= { ( g n ) 4 s ( X ) } / ( 2 7 q ~ .  (18) 
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FIGURE 3. Skewness factors. Experiments : -0-, S(u) ; PO-, S(V) ; -0-, S(8). 
Calculations from equation (19): -, S(u ) ;  ---, S ( v ) ;  ---, S(0). 

2 
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FIGURE 4. Flatness factors. -0-, F ( u )  ; -.-, F ( v )  ; -0-, F ( 0 ) .  

Thus, (18) gives the following formula for X ( x )  : 

S(X) = 3(2X)9{Y-(X)-Y+(X)}. (19) 

The values of X(x)  from (19), calculated using measurements of the time fractions, are 
compared with the present direct measurements of skewness factors in figure 3. 
Agreement is seen to be almost perfect, which is important because i t  demonstrates 
that the skewness factor characterizing turbulence structures can be represented by 
the time fractions (i.e. intermittency factor) occupied by positive or negative events 
of a turbulence component. 

The flatness factors F ( u )  and F ( B )  present similar distributions which are very 
close to the Gaussian value of 3 in the log-law region. And the skewness factors of u 
and 0 are nearl_y equal to zero in this region. Thus, the assumption of the Gaussian for 
P(Z;)- and P(0)-distributions does not lead to a noticeable error, as is shown in 
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of!j 
FIGURE 5 .  Probability density distributions of Reynolds, shear stress and turbulent scalar flux. 
( a )  e1(&6): 0, experiment; ---, equation (23). ( b )  eI(80): 0, experiment; -, equation (22). 

figure 1. Besides, F ( 0 )  becomes minimum a t  a location where scalar variance attains 
a maximum (Hishida et al. 1986), which has a close similarity to F ( u )  behaviour 
(Zarii. 1979). Values of F ( v ) ,  on the other hand, deviate considerably from the 
Gaussian value over a greater part of the pipe section (see figure 1 ) .  

A full knowledge of skewness and flatness factors near the wall is also required to 
investigate the coherent structures of wall turbulence. However, we can find few 
reliable measurements in the literature of these factors (Zarid 1979), particularly for 
v and 0, so more accurate data are needed. The present distributions of S(u) and F ( u )  
agree quite well with the recent measurements in a flat-plate boundary layer (Durst, 
Jovanovic & Kanevce 1987). 

4.2. Probability density distributions of second-order moments 
The p.d.f. distributions of Reynolds shear stress uv and turbulent scalar flux v6' are 
shown in figures 5 (a )  and 5 (b ) ,  respectively. The solid line shows the theoretical p.d.f. 
PII(x) for a second-order moment derived from (12). The p.d.f. of uv has been studied 
by Lu & Willmarth (1973), Antonia & Atkinson (1973) and Nakagawa & Nezu (1977), 
but a systematic investigation of the p.d.f. of v8 has not been performed so far. 

The theoretical p.d.f. P,,(x) can be obtained by differentiating a cumulatjve 
probability distribution function E;,(x) with respect to x. In  the case of x = 60, a 
definition of F,,(x) is 

F,,(x) = Prob ($0 < x}. (20) 
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+I: [I:{ P(d,v”,6)dd d8 d6. (21) 1 Î 
Differentiation of (21) with respect to  x leads to 

Similarly, the p.d.f. for $6 is derived as 
1 K G 4  

PII(&4) = - p+q=even C C,,, JOm H p ( d ) H q ( : )  exp[ -i{d2+(zy}] F. (23) 

As shown in figure 5, though oppositely skewed, the distributions of PII(&6) and 
PI,(&?) are seen to be similar in every respect. The shapes of the p.d.f.s change little 
with radial location, from within the wall region out to the core region of the flow, 
which corresponds to constancy in correlation coefficients (Ru, z -0.5 and R,, M 0.5) 
over these regions (Hishida et a,l. 1986). The long tails of the p.d.f.s substantiate 
the highly intermittent nature of momentum and scalar A transfer. At the pipe 
centreline, R,, and R,, are zero, and both P,,(d6) and PI,(v”O) distributions become 
symmetrical. It is evident from figure 5 ( a ,  b )  that  the theoretical predictions from 
(22) and (23) follow the experimental trend quite closely. 

4.3. Turbulent diflusion of turbulence energy components, scalar variance, 
Reynolds shear stress and turbulent scalar fluxes 

4.3.1. Comparison of measurements of turbulent diffusion with predictions by existing 
models for triple products 

The distributions of turbulent diffusion, i.e. third-order moments, of turbulence 
energy components u2 and v2: scalar variance 02, Reynolds shear stress uv ,  and 
turbulent scalar fluxes u8 and v8 are presented in figures 6 (a ,  b).  The values predicted 
from the existing models for triple products ‘UUD and a, i.e. diffusion of uv and v0, 
are included in figure 6 to evaluate the performance of the models. A prime denotes 
the normalization of velocity and scalar (temperature) by the friction velocity and 
friction temperature, respectively. The representative existing models are as follows : 

(i) Models for turbulent diffusion of Reynolds stress -: 
( a )  Daly & Harlow(1970) 

k-au.u. 
ui uj U k  = - CR1 - U k  U L  3 ; 

€ ax1 
( 6 )  Hanjalid & Launder (1972) 
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FIGURE 6. Distributions of turbulent diffusionJthird-order moments). (a)  Velocity field. 
Experiments: -0-, -m; -0-, ou2; -o-, vw2. Predictions for -m: -, Daly & Harlow 
(1970) ; ---, Hanjalid & Launder (1972) ; ---, Cormack et aZ. (1978). (b )  Scalar field. Experiments : 
-0-, a; -O-, -a; -@-, we2. Predictions for a: -, Owen (1973); ---, Deardorff 
(1973); ---, Wyngaard & Cot6 (1974). 

( c )  Cormack, Leal & Seinfeld (1978) 

A 7-2 11. 

(ii) Models for turbulent diffusion of scalar flux uiu,O: 
(a)  Deardorff (1973) 
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Model for triple product Constant Value (present work) 

Daly & Harlow (1970) 
Hanjalid & Launder (1972) 
Cormack et al. (1978) 

(for all flows) 

Deardorff (1973) 
Owen (1973) 
Wyngaard & Cot6 (1974) 
Wyngaard (1975) 

0.21 
0.11 

- 1.72 x 
-4.80 X 

- 1.02 x lo-' 
0.11 
0.11 
0.13 
0.13 

- 8 . 1 4 ~  10-3 

TABLE 1. Model constants used in the existing models for triple products 
of velocity and scalar 

with c ,  = c2 = c3 = csl ; 

letting c3 = 0, 

letting c2 = c3 = 0, 

( b )  Owen (1973) 

(c) Wyngaard & Cot6 (1974) 

~ 

(iii) Models for turbulent diffusion of scalar variance ui02 
(a )  Deardorff (1973) 

letting ui = O in (ii) ( a )  ; 
( b )  Wyngaard (1975) 

letting ui = 0 in (ii) ( c ) ,  

where k and E are the turbulence kinetic energy (=  iw) and dissipation rate of 
turbulence energy, respectively. All are definitely gradient-type diffusion models. 
The model constants used in the present study are summarized in table 1. 

As shown in figure 6, turbulent diffusions pertaining to the velocity field are 
similarly distributed with maxima a t  approximately y+ x 30. The same applies to 
turbulent diffusions for the scalar field, in which the second peaks are seen to exist 
in the outer region. Comparing the calculated values of -W and a from the 
existing models with the experimental results, we find that all models fail to predict 
the measurements quantitatively for y+ > 100 and even qualitatively for y+ < 100, 
where the predictions have the opposite trend to  the measurements. Accordingly, 
there is a risk that serious errors may be introduced into the results of predictions if 
these models are incorporated in the Reynolds-stress and/or scalar-flux equation 
models. 

cI = c2 = cs2 in (27) ; 

el = cs3 in (27). 

4.3.2. Probability density distributions of third-order moments 

To construct appropriate models, we need to investigate the statistical charac- 
teristics of third-order moments in detail and give a theoretical explanation for 
them. Figure 7 shows measurements of p.d.f. distributions of third-order moments. 
Every p.d.f. is nearly symmetrical about zero and has very long tails for positive and 
negative values of the abscissa, although not distributed in the Gaussian manner. 
Also, all of these distributions are too similar to be readily distinguished from others. 
This means that turbulent diffusion is a very intermittent phenomenon and that, the 
magnitude and direction of time-averaged diffusion are determined by a delicate 
imbalance (i.e. asymmetry) of the p.d.f. distribution. 
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- 6  -4  -2  0 2 4 6 

BG, 868 

FIGURE 8. Comparison of predictions with experimental results for probability density of third- 
order moments (y' = 37.1). 0, experiments; -, equation (28) for PII1($zZ) and equation (29) for 
PrrI(660); ---, Gaussian. 

To illustrate this situation, w: derive the tkeoretical p.d.f. distributions for third- 
order moments PIII(6Q6), PIII(646') and PII1(6i6') from a non-Gaussian joint p.d.f. (12). 
Following the same p;ocedureAas for the second-order moments (cf. (22) and (23)), 
PII,(x) for x = 646: 666' and 646 are 

The p.d.f. based on an assumption of Gaussian behaviour, PcIII(x), is similarly 
obtained, using (8) instead of (12). 

The measured p.d.f. distributions of 646 and 666' are presented in figure 8, 
compared with the theoretical predictions from (28)  and (29) and those based on a 
Gaussian joint p.d.f. Evidently, the asymmetry in p.d.f. distributions is fractional, 
but it is this asymmetry that determines the net value of turbulent diffusion. If a 
theory is developed on the basis of an assumption of Gaussian behaviour, the p.d.f. 
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distributions of third-order moments become symmetrical about zero. Consequently, 
time-averaged values of third-order moments (i.e. expectations of instantaneous 
third-order moments) are consistently zero, and the important characteristics of 
turbulent diffusion are not described fully. However, as seen from figure 8, the 
present theoretical models (28) and (29) can precisely predict the asymmetry in p.d.f. 
distributions, thus yielding the correct values of third-order moments. 

5. Fine structure of the coherent turbulent transport process 
5.1. Classijication of Juid motions 

To make clear the relation between the coherent structures and turbulent momentum 
and scalar transfer quantitatively, it is essential to properly extract well-ordered 
motions from superficially random time-series data of hot-wire measurement. 
Several kinds of detection algorithms have been proposed ; each algorithm possesses 
its own special features so as to catch various aspects of the coherent structures. 
Recently, Bogard & Tiederman (1986) evaluated the capability of several 
representative detection algorithms using simultaneous measurements from a hot- 
wire and flow-visualization techniques in a wall-bounded flow. As a result, they 
concluded that a uv-quadrant method had the greatest reliability with a high 
probability of detecting the organized motions and a low probability of false 
detections. 

In  another paper (Nagano & Tagawa 1988), we developed an objective detection 
algorithm on the basis of a ‘trajectory’, i.e. a quadrant sequence of fluid motions 
classified in the (u, v)-plane. And it was demonstrated that typical vortex structures 
of wall turbulence, which had been identified by the flow-visualization techniques, 
could be reproduced precisely using this detection algorithm. For that reason, in the 
present study, we also use the uv-quadrant analysis (figure 9). According to this 
method, ejection- and sweep-type motions, which are the basic elements of coherent 
structures in wall turbulence, are classified into the second (i = 2) and fourth 
quadrants (i = 4), respectively. It should be mentioned here that ejections in the 
strict sense correspond to the second-quadrant motions with larger amplitudes 
(Bogard & Tiederman 1986). However, for simplicity, we refer to all quadrant-2 
motions as ejections and all quadrant-4 motions as sweeps in this study. 

5.2. Conditional probability density distributions of velocity and scalar Juctuations 

Using the generalized three-dimensional joint p.d.f. developed in $3 ,  we can obtain 
the following one-dimensional conditional p.d.f. FJx) in terms of the flow- 
classification given in figure 9 :  

where CTu,t = (1,  - 1 ,  - 1 ,  l ) ,  = ( l , l ,  - 1 ,  - 1 ) .  

Here, the suffix i denotes each quadrant in the (u, v)-plane, and ( T ~ , ~  and CT,, are sign 
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FIGURE 10. Conditional probability d2nsity distributions of velocity and scalar fluctuations. 
Experimgnts: 0, P , ( C ) ;  0 ,  e(6); 0 ,  pZ(0). Predictions from equation (31): -, p2(4); -, P,(v^); 

, P , ( @ .  ~ _ _  

functions which represent the signs of u and v of the ith quadrant. For example, in 
the case i = 2, we have ( r u , i , ~ v , i )  = ( -  1 , i ) .  

The experimental results for Pi(x) are shown in figure 10, compared with the values 
calculated from (31). The most probable value of the conditional p.d.f. of scalar 
fluctuations exists in the region 0 > 0 a t  an ejection phase (i = 2) and in the region 
0 < 0 a t  a sweep phase ( i  = 4). This result provides statistical support for the 
evidence that low-momentum and high-enthalpy fluid moves away from the wall 
during the ejection phase and, inversely, high-momentum and low-enthalpy fluid 
moves toyard the wall during the sweep phase. On the other hand, the conditional 
p.d.f.s e(0) related to both interaction phases (i = 1,3) are almost symmetrical; that 
is. the scalar fluctuations do not correlate with the interactive fluid motions. 



Statistical characteristics of wall turbulence with a passive scalar 173 

Predictions from (31) are seen to be in excellent ggreement with the experimental 
values. Thus, we can apply the joint p.d.f. P ( d ,  6,8) to the analysis of the coherent 
turbulent structures and the relevant transport processes of momentum and 
scalar. 

5.3. Contributions of organized Jluid motions to second-order moments 

5.3.1. Contributions of different motions to turbulent momentum and scalar transfer 

Figures 11 and 12 respectively show the results of the fractional contributions to 
the time-averaged values of Reynolds shear stress m and turbulent scalar flux 3 
from each fluid motion classified in the (u, v)-plane. The contributions from ejections 
become largest in the region y+ > 10, while sweeps predominate in the near-wall 
- region (y' < 10) .  These features are equally seen in contributions to both m and 
v0. Lines in figures 11 and 12 represent the theoretical predictions from the following 
equation (33), which is obtained by calculating the moment uZvmBn separately in each 
quadrant of the (u,v)-plane with (12): 

where 

and the parameter H is a threshold so as __ to pick out phenomena only for IZi6) > H .  
Putting H = 0, 1 = m = 1 and n = 0 for ( U V ) ~ ,  and H = 0, m = n = 1 and I = 0 for 
( ~ 8 ) ~  in (33), we obtain the theoretical values shown in figures 11 and 12, respectively. 
As seen in these figures, the theoretical predictions correspond with the experimental 
trends satisfactorily. Thus, essential aspects of the coherent structures, such as 
negligible contributions from both interactions and a reversal of contributions in 
ejections and sweeps a t  about y+ = 10, are well reproduced. 

The scales of fluid motions which contribute mainly to the turbulent scalar 
transport are presented in figure 13, being evaluated using a threshold level H .  From 
this figure, one can recognize that the scalar transport processes are dominated by 
large-amplitude ejection- and sweep-type coherent motions, and the contributions of 
both interactions are negligible for H > 2. Nakagawa & Nezu (1977) used a two- 
dimensional p.d.f. for analysing the structures of Reynolds shear stress 
theoretically. However, in order to  clarify the structures of turbulent scalar fluxes in 
terms of typical turbulent motions classified in the (u,v)-plane, we need a three- 
dimensional p.d.f. Hence, their approach is not applicable for this purpose. The lines 
in figure 13 show the predictions from (33) for various threshold levels. Clearly, (33) 
is very useful for analysing the turbulent scalar transfer in conjunction with the 
scales of fluid motions. 

- 

5.3.2. Conditional probability density distribution of scalar Jlux v8 

As stated previously, turbulent scalar flux vB is determined by large-amplitude 
organized motions (ejections and sweeps). To gain a deeper insight into this distinct 
feature, we have investigated the conditionai p.d.f. Aof v8 (figure 14a) and the 
conditional weighted distribution defined as 68[PI,,,(68)] (figure 14b) in the buffer 
region (y' = 10.6) where the organized motions are prominent. The distribution of 
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FIGURE 11. Fractional contributions of different motions to the time-averaged value of Reynolds 
shear stress -m. Experiments: a, i = 1 ; 0, i = 2 ;  0 ,  i = 3; 0,  i = 4. Predictions from equation 
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FIGURE 12. Fractional contributions of different motions to the time-averaged value of 
turbulent scalar flux 3. Notation as in figure 1 1 .  

6d[P1,, i(&)] represents a”statistica1 contribution to the total scalar flux 2 from 
various amplitudes of 60 fluctuations. As is obvious from figure 14(a), ejections 
( i  = 2) and sweeps (i = 4) are the principal contributors to the time-averaged scalar 
flux 3, since the conditional p.d.f.s in the ejection and sweep phase are skewed 
largely to the positive side of v0. At this y-location, the fractional contributions of 
ejections and sweeps are nearly equal (see figure 12). However, figure 14 ( 6 )  indicates 
that  the detailed structure of ejections and sAweeps differs somewhat. Larger- 
amplitude fluctuations of turbulent scalar flux (60 > 2.5) are mainly associated with 
the sweep-type coherent motions. Furthermore, figure 14 (a,  6 )  also proves that 
organized motions (ejections and sweeps) sometimes contribute negatively to the 
time-averaged value 2. This means that a passive-scalar field does not necessarily 
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H 

FIGURE 13. Fractional contributions of different motions t o  a as a function of H .  Notation as 
in figure 11. 

follow a velocity field in a wall turbulent shear flow. In  both interaction phases 
(i = 1 , 3 ) ,  the distributions of conditional p.d.f.s are seen to be much more 
symmetrical, and the correspondence between turbulent scalar transfer and fluid 
motions is very weak. Hence, the fractional contributions to from both 
interactions remain very low. 

The lines in figure 14(a) show theoretical values calculated from the following 
equation, (34), which is obtained by applying the same procedure as in the derivation 
of the p.d.f. for a second-order moment from the three-dimensional joint p.d.f. : 

The appreciable discrepancy between the theories and measurements can be 
attributed to a small truncation effect in the series expansion for the joint p.d.f. 
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5.3.3. Weighted functions in the (u, v)-plane 

The conditional analysis based on threshold H alone is not sufficient to ascertain 
the detailed correspondence between momentum/scalar transfer and fluid motions. 
Therefore, we define the following weighted function W,(Z;, 4) in the (u, w)-plane : 

This function provides a powerful tool to see how, and how much, each fluid motion 
in the quadrants of the (u, v)-plane produces the moment x. The integrated value of 
W, in each quadrant becomes the fractional contribution (x)i, and integration over 
the whole (u, v)-plane reduces to the conventional time-averaged vaiue Z. 

The experimental distributions of the weighted function for x = O2 are shown in 
figure 15. In  the immediate neighbourhood of the wall (y' = 7.6), the distribution 

FIGURE 14. (a) Conditional probability density distribution of scalar flux 66. Experiments : 

_-- , i = 3 ;  ---, i = 4. ( b )  Experimental distributions of 60[P,,,i(6B)] representing a fractional 
contribution to the scalar flux a. 0, i = 2; 0 ,  i = 4. 

0 ,  i = 1 ; 0, i = 2;  0 ,  i = 3; 0 ,  i = 4. Predictions from equation (35): -, i = 1 ; -, i = 2 ;  
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v+ = 317.6 
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FIGURE 15. Experimental distributions of the weighted function for scalar variance @. 

extends far into the fourth quadrant (sweep phase), and peaks in the second 
quadrant (ejection phase) as if u-fluctuations were limited at Zi = -2. In  the core 
region of the flow (y' = 377.6), on the other hand, the distribution becomes wider, 
gently sloping in the second quadrant, and becoming narrower and steeper in the 
fourth quadrant. In another paper ~ (Nagano & Tagawa 1988), it was shown that 
the contributions to scalar variance (S2)< from sweeps were largest in the vicinity of 
the wall, and became almost equal to those from ejections in the core region. 
However, figure 15 demonstrates the existence of a definite difference in the internal 
structures of scalar variance ", which cannot be identified from the conventional 
fractional contributions (O2)$. Hence, the mechanisms of the contribution from 
cjections and sweeps to the production of scalar variance in the near-wall region are 
totally different from those in the core region. Moreover, one can recognize that, even 
if the fractional contributions from ejections and sweeps are equal, there is a large 
difference in the scales of both motions governing the production of scalar 
fluctuations. 

The experimental results for W,, and W,i in the near-wall region and for WCe in the 
core region are shown in figure 16(a-c), respectively. In  the contour maps of 
figure 16, solid and broken lines represent positive and negative values, and intervals 
between two successive contour lines are 0.02. With figure 16 (a ,  b), we can investigate 
the internal structures of the production processes of ~ZV and 3 near the wall. 
Integration of W,, and Wdg within each quadrant results in the fractional 
contributions of different motions with H = 0 presented in figures 11 and 12, 
respectively. Also, integration of Wz;d over the region outside the hyperbolic 
boundary 6 = * H / G  results in the fractional contributions to 3 from different 
motions as a function of H shown in figure 13. Thus, figure 16 contains a great deal 
of information. 

As seen from these figures, the sweep-type motions with large-amplitude u- 
fluctuations dominate the production of ~ZV and 3 in the near-wall region. The 
distributions have characteristics similar to the scalar variance (figure 15; y' = 7.6). 
However, whereas both interactions ( i  = 1,3) make a positive contribution to the 

- 
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FIGURE 16(a, 0).  For caption see facing page. 
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FIGURE 16. Experimental distributions of the weighted functions for turbulent momentum and 
scalar transfer. ( a )  W,; in the near-wall region (y' = 7.6) ; ( b )  Wci in the near-wall region (y' = 7.6) ; 
( c )  Wci in the core region (y' = 377.6). 

production of scalar variance e", they contribute negatively to the Reynolds shear 
stress -W and turbulent scalar flux z. Profiles shown in figure 16(a,  b)  are too 
similar to be readily distinguished from one another. This is an important result 
- which shows that a close analogy exists between the internal structures of w and 
V8. 

The distribution of W5g in the core region (figure 16c) is different from that in the 
near-wall region (figure 16b) in the following respects: (i) the distributions in the 
second and fourth quadrants exhibit opposite trends ; (ii) the negative regions seen 
in the first and third quadrants of figure 16(b) disappear in figure IS(c).  The internal 
structures of W,-e change with the distance from the wall as in scalar variance, and 
the analogy between Reynolds shear stress and turbulent scalar flux breaks down 
with increasing distance from the wall. Note that Reynolds shear stress -uv is 
consistently negative in the first and third quadrants. 

5.4. Contribution of organized motions to third-order moments 

In  $4.3.2, we have shown that the p.d.f. distributions of third-order moments (i.e. 
turbulent diffusion of turbulence energy, scalar variance, turbulent scalar fluxes, 
etc.) have very long tails and the asymmetry in these p.d.f.s is fractional, but it is this 
asymmetry that determines the net value of turbulent diffusion. In this section, we 
elucidate their internal structures. 

The contributions to 2 and v82 from different fluid motions with H = 0 are 
presented in figures 17 ( a )  and 17 (b) ,  respectively. Obviously, the turbulent diffusion 
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FIGURE 17.  C'ontributions of organized motions tothird-ordermoments %)u2 and 2182. Xotation 
as in figure 11. ( a )  ( 2 ~ ' ) ~ ;  ( b )  ( ~ 0 ~ ) ~ .  

of u2  and d2 occurs mainly during the ejection and sweep phases ( i  = 2,4) ,  and hence 
the disparity in contributions between these two types of motions determines the 
magnitude and direction (i.e. plus and minus) of time-averaged diffusion. Neither 
interaction (i = 1,3) influences the time-averaged values and @, since the 
fractional contributions from these motions are not only very small in absolute value 
but nearly symmetrical about zero (sum being zero). It is now established that the 
turbulent diffusion is determined by dynamic phenomena associated with organized 
motions of ejections and sweeps. This also explains why the third-order moments 
cannot be described adequately by a static model such as gradient-type diffusion of 
the second-order moment (see 54.3.1). The theoretical values in figure 17, calculated 
from (33), reproduce this dynamic behaviour very well. On the other hand, if a 
Gaussian distribution is supposed for the joint p.d.f. in (33). the contributions to the 
third-order moments from motions in the second and fourth quadrants of the (u, v)- 
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FIGURE 18. Conditional probability density distributions of the third-order moments 6 2  and 6$ 
(y+= 37.1). Experiments: 0 ,  i = l;*O, i = 2 ;  0 ,  i = 3 ;  0 ,  i = 4. -, predictions from equation 
(36) for 6G2 and equation (37) for 68'. 

plane are completely equal in magnitude, with an opposite sign. Hence, the foregoing 
important characteristics of third-order moments cannot be described fully. 

To assess the feasibility of predicting the characteristics of the third-order 
moments theoretically in conjunction with the scales of fluid motions, we have 
examined the experimental distributions of the conditional p.d.f. of vu2 and v02 a t  
y+ = 37.1 where the net values of the turbulent diffusion have their maxima (see 
figure 6). Figure 18 shows the measurements, compared with the present predictions. 
Solid lines in this figure represent the following theoretical distributions, which are 
obtained after differentiating the cumulative p.d.f.s for vu2 and v02 : 

where x = 6d2;  

o K S 4  

where x = GO2. 
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FIGURE 19. Experimental and theoretical distributions of the weighted function for ve' 
(y' = 37.1). (a )  Experiment; (b )  prediction. 
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It can be seen from the measured distributions that both conditional p.d.f.s of 
vu2 and v02 a t  small 1x1-values are a bit larger in the sweep phase than in the ejection 
~ phase, and vice versa at) larger 1x1-values. Since the fractional contributions (vu2)( and 
( ~ 0 ~ ) ~  are obtained from the integration of (36) and (37) multiplied by x, the 
conditional p.d.f.s a t  larger IzI-values contribute mainly to these quantities. 
Accordingly, since large-amplitude fluctuations of vu2 and v02 are generated mainly 
by ejections, the fractional contributions from ejections become larger than those 
from sweeps, as seen in figure 17. Such phenomena are well reproduced by the 
theoretical conditional p.d.f.s given by (36) and (37).  

The experimental and theoretical distributions of the weighted function (35) for 
v02 are shown in figures 19 (a) and 19 ( b ) ,  respectively. From the experimental result, 
one - can see that the large-amplitude ejections contribute mainly to the production 
of v02. Apparently, the theoretical results reproduce precisely the peak locations and 
the extent of the distributions in the second and fourth quadrants. 

6. Conclusions 
The statistical characteristics of momentum and scalar transfer in a wall turbulent 

shear flow have been investigated experimentally and theoretically. The results can 
be summarized as follows. 

(i) A three-dimensional joint p.d.f. has been developed to describe the transfer 
processes of momentum and scalar in a two-dimensional turbulence field. 

(ii) The p.d.f. distributions of u- and 8-fluctuations can be approximated with 
Gaussian ones in the log-law region, but in the other region they are skewed to the 
opposite sides. The probability distribution of v-fluctuations differs from a Gaussian 
distribution over a greater part of the flow field. 

(iii) The skewness factor can be represented by the time fractions (i.e. 
intermittency factor) occupied by positive and negative events of a turbulence 
component. 

(iv) The p.d.f. distributions of Reynolds shear stress uv and turbulent scalar flux 
v8 are similar, and change little over the entire cross-section except for the pipe- 
centreline region. 

(v) The distributions of turbulent diffusion of uv, v0, 02, etc. have been measured 
and compared with predictions from the existing models for triple products. All 
existing models are found to give quite unsatisfactory predictions for diffusion of uv 
and v0. 

(vi) A net value of turbulent diffusion is determined by the fractional asymmetry 
of the p.d.f. distribution. This asymmetry cannot be reproduced by a Gaussian p.d.f. 
but can be represented by the p.d.f. developed in the present study. 

(vii) The theoretical formulations for the conditional p.d.f. and the fractional 
contributions to various moments are derived using the three-dimensional joint 
p.d.f. These equations are applicable to the structural analysis of velocity and scalar 
fluctuations and their high-order moments. 

(viii) Scalar fluctuations are influenced strongly by the organized motions of 
ejections and sweeps, but correlate little with interaction-type motions. 

(ix) In  the near-wall region y+ < 10, the sweeps play a dominant role in the 
production processes of Reynolds shear stress i i ~  and turbulent scalar flux 8; the 
ejections predominate in the remaining region. 

(x) In the near-wall region, there is a close analogy between the instantaneous 
structures of Reynolds shear stress uv and turbulent scalar flux v0. 
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(xi) The net values of turbulent diffusion in turbulence energy, scalar variance, 
turbulent scalar fluxes, etc. are determined by an imbalance between the 
contributions from ejections and sweeps. This can be well predicted by the present 
theory. 

This research was partially supported by a Grant-in-Aid for Scientific Research 
from the Ministry of Education, Science and Culture of Japan (No. 61550156). 
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